New families of self-dual codes
نویسندگان
چکیده
Recently, the author has constructed families of MDS Euclidean self-dual codes from genus zero algebraic geometry (AG) codes. In present correspondence, more optimal AG are explored. New odd characteristic and those almost explicitly one curves, respectively. More curves higher genus.
منابع مشابه
Construction of new extremal self-dual codes
In this paper, new binary extremal self-dual codes are presented. A number of new extremal singly-even self-dual codes of lengths 48; 64 and 78, and extremal doubly-even self-dual codes of lengths 80 and 88, are constructed. We also relate an extremal doubly-even self-dual code of length divisible by 24 to an extremal singly-even self-dual code of that length. New singly-even self-dual codes of...
متن کاملNew self-dual codes of length 72
In this paper we obtain at least 61 new singly even (Type I) binary [72,36,12] self-dual codes as a quasi-cyclic codes with m=2 (tailbitting convolutional codes) and at least 13 new doubly even (Type II) binary [72,36,12] self-dual codes by replacing the first row in each circulant in a double circulant code by "all ones" and "all zeros" vectors respectively. Keywords—convolutional encoding, qu...
متن کاملNew extremal self-dual codes of length 62 and related extremal self-dual codes
In this correspondence, new extremal self-dual codes of length 62 are constructed with weight enumerators of three different types. Two of these types were not represented by any known code up till now. All these codes possess an automorphism of order 15. Some of them are used to construct extremal self-dual codes of length 60 by the method of subtracting. Manuscript received November 20, 2001;...
متن کاملNew extremal ternary self-dual codes
Compared to binary self-dual codes, few methods are known to construct ternary self-dual codes. In this paper, a construction method for ternary self-dual codes is presented. Using this method, a number of new extremal ternary self-dual codes are obtained from weighing matrices. In addition, a classification is given for extremal ternary self-dual codes of length 40 constructed from Hadamard ma...
متن کاملExtension theorems for self-dual codes over rings and new binary self-dual codes
In this work, extension theorems are generalized to self-dual codes over rings and as applications many new binary self-dual extremal codes are found from self-dual codes over F2m + uF2m for m = 1, 2. The duality and distance preserving Gray maps from F4 + uF4 to (F2 + uF2) and F42 are used to obtain self-dual codes whose binary Gray images are [64, 32, 12]-extremal self-dual. An F2 + uF2-exten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Designs, Codes and Cryptography
سال: 2021
ISSN: ['0925-1022', '1573-7586']
DOI: https://doi.org/10.1007/s10623-021-00847-x